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Abstract—This report explores the construction of a unit
selection voice for text-to-speech (TTS) synthesis, focusing on
the waveform generation stage. We develop a voice for speaking
aloud dessert recipes, utilizing data collected from websites.
We discuss a greedy algorithm for automatic script selection
with diphone coverage maximization. We discuss the recording
process, automatic corpus segmentation, and the inclusion of
linguistic features and acoustic parameters in the unit selection
algorithm. Two experiments with 39 non-expert listeners with
60% of native English speakers evaluated the impact of various
factors on perceived naturalness and intelligibility. A comparison
of the REAPER pitch marking and F0 estimation algorithm to
Festival’s equivalent algorithms found no significant preference
for naturalness among listeners. The second experiment assessed
the effect of data quantity and domain adaptation, concluding
that additional in-domain data improve naturalness and intel-
ligibility within the domain. Overall, our findings suggest that
unit selection TTS systems can produce natural and intelligible
synthesized voices with minimal effort, given sufficient data with
modest audio quality and phonetic coverage.

Index Terms—Speech Synthesis, Festival, Unit Selection,
Speech Databases

I. INTRODUCTION

In the era of rapidly advancing artificial intelligence and
speech technology, text-to-speech (TTS) synthesizers play a
crucial role in various applications, including virtual assistants,
audiobook narration, and accessibility tools for the visually
impaired. One of the most significant challenges in developing
TTS systems is creating natural and intelligible synthesized
voices that closely resemble human speech. Among various
synthesis techniques, unit-selection-based TTS systems have
shown great promise in producing high-quality voices which
can be synthesized with data recorded with a modest record-
ing setup and with a few hundred utterances with sufficient
phonetic coverage.

Unit selection TTS systems build synthetic speech by select-
ing and concatenating small units of recorded speech, such as
phonemes or diphones, from a large database of pre-recorded
speech samples. The quality of the generated speech depends
heavily on the quality and variety of the recorded samples in
the unit selection database. As the voice is synthesized from
recorded samples, many properties of speech such as prosody,
segment duration etc. do not need to be explicitly modelled
[1]. A well-designed unit selection voice can provide a high
level of naturalness and intelligibility, as the natural segment
duration and prosody is inherent in the unit selection database.

This report investigates the process of building a unit
selection voice for TTS synthesizers, focusing primarily on
the waveform generator stage of the synthesis pipeline. We
present an overview of unit selection synthesis, discuss the

main components of the unit selection algorithm, and explore
techniques for optimizing voice quality. We further offer
practical recommendations for data collection, processing, and
algorithm design using Festival [1], an open-source, general-
purpose, and multi-lingual TTS to create highly natural and
intelligible synthesized voices using unit-selection-based TTS
systems. Furthermore, we delve into the design and evaluation
of a TTS system tailored for speaking aloud dessert recipes
in the cooking domain, sharing insights from two experiments
involving subjective and objective evaluations.

This report is organized as follows. Section II describes the
process of voice building. The process of data collection, script
design, recordings and labelling for recording speech database
for concatenative unit selection is described in Section III. Sec-
tion IV reports the various listening tests conducted and their
results. Finally, we conclude with a summary and discussion
of findings in Section V.

II. BUILDING SYNTHETIC VOICE

The process of building a synthetic voice could be broken
down into three major steps:

o Text analysis: From raw text to identified words and
basic utterances.

« Linguistic Analysis: Finding pronunciations of the words
and assigning prosodic structure to them: phrasing, into-
nation and durations.

o Waveform Generation: From a fully specified form
(pronunciation and prosody) generate a waveform

The synthesized speech is implemented using multisyn
unit selection algorithm [2] where a target utterance structure
is predicted which forms a target specification. From the
inventory of recorded units, a list of suitable candidates is
proposed for each target unit. The best sequence of candidates
is found by minimizing target and join costs. Figure 1 provides
an overview of the unit selection TTS system.

A. Target Construction

For synthesizing unit selection speech, a target utterance
structure or target specification is constructed. In earlier di-
phone synthesis systems, a lot of information such as pitch, du-
ration, intensity etc. need to be predicted, which is not strictly
required for unit selection synthesis. A lot of the mentioned
information is inherently present in the recorded units, which
will later become the part of unit selection database. Hence,
only basic linguistic resources such as pronunciation lexicon,
phrasing model etc. are required for unit selection synthesis.
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Fig. 1: Overview of unit selection TTS system.

B. Target Cost

The target cost measures how well a candidate unit from the
database matches the desired target unit in terms of linguistic
or prosodic features. The lower the target cost, the better
the match between the candidate unit and the target unit. By
adjusting the weight of the target cost, you can influence the
importance of finding a good match between the desired and
available units in the database.

K
Clarger (i, ti) = Y _ wrdy(ui, t:), )
k=1

where u; is the candidate unit, ¢; is the target unit, K is the
total number of features, wy, is the weight for the k-th feature,
and dy (u;, t;) is the distance function for the k-th feature. The
weights adds a penalty if a feature does not match the target
specification.

Because of the non-uniform distribution of phones, the
total number of candidates for each target unit can be quite
large. Pre-selection can be employed to limit the number of
candidates for each target unit, in which case it acts as a filter
for passing only the most suitable candidates for which join
costs will be computed. This can consequentially speed up the
search significantly by restricting the search space.

The distribution of diphones takes the form of long-tail Zipf-
like distribution, which can be seen in Figure 3. This means
that complete coverage of all the diphones is not guaranteed
during the script design phases. Another possibility could be
that the words are spoken in pronunciation which is different to
that predicted during script design or the text to be synthesized
has out-of-domain words. Hence, it is possible that we do not
have any suitable candidate corresponding to a target unit. In
such cases, some backing-off must be performed. Backing-
off procedures include a possible list of manually written
substitution rules which can be referred to in case of missing
diphones such as vowel reduction for full vowels. Festivals
also provide a phone_substitution list, which could be
used for this purpose. Another way to implement backoff is to
substitute with surrounding diphones to preserve the continuity
of the phone sequence. We can also switch to half-phones as
target units to provide suitable candidates and chose the best
candidate which provides the lowest join cost.

C. Join Cost

The join cost measures how well two adjacent candidate
units can be concatenated to form a smooth transition without
any audible discontinuities. The lower the join cost, the better
the concatenation between the two units. By adjusting the



weight of the join cost, you can influence the importance of
achieving smooth transitions between the selected units.

K
Cloin(ti wi1) = Y wid (ui, wiy1), 2)
k=1

where u; and u; are adjacent units in the sequence, K is the
total number of features, wy, is the weight for the k-th feature,
and dj(u;,u;41) is the distance function for the k-th feature.

The join cost has three subcomponents which are equally
weighted: pitch, energy and spectral mismatches. The join cost
is calculated by calculating Euclidean distances between 12
MFCC:s of the potential join to compute spectral discontinuity.
Similarly, pitch and energy mismatches are calculated using O
and energy coefficients.

The join cost could significantly vary depending on the
phonetic class of the candidate units. For example, joins are
often inaudible when the phonetic class is fricatives. Similarly,
we can also identify poor joins, for example, one of the most
costly mismatches is incurred between a join of voiced and
unvoiced speech, hence, we can have preventive checks for
such joins.

There’s often a trade-off between target cost and join cost.
It’s essential to find a balance between these two factors to
achieve high-quality speech synthesis. A well-tuned system
will prioritize both target and join costs to ensure an accurate
unit selection and smooth concatenation, resulting in natural-
sounding speech. The optimal weights for target cost and
join cost can vary depending on the specific TTS system, the
speech database, and the application’s requirements and should
be tuned on the basis of statistical or perceptual evaluations
on the data from the target domain.

D. Unit Sequence Search

The target cost measures how well a candidate unit matches
the target features of the input text, while the join cost
measures how well the candidate units fit together acoustically.
By combining these two costs, the unit selection algorithm can
select the best-suited units and concatenate them to generate
natural-sounding speech. The Viterbi search algorithm aims

to find the optimal unit sequence u* = (uf, us,...,u} ) that
minimizes the total cost:
N N
C<t7 ll) = Z Ctarget(uia ti) + Z ijoin('uifly ui) 3)
i=1 i=2

Here Ciqrget(ti, u;) denotes the target cost between candi-
date unit u; and target unit ¢; and C)on(ui—1,u;) is the join
cost between candidate units u;_; and u;. The optimization to
find the best unit sequence is done by using the Viterbi search
algorithm [3].

u* = argmin C(t, u) 4)
E. Waveform Concatenation

Selected candidate units from the unit selection algorithm
are concatenated in a pitch-synchronous, overlap-and-add

manner. To ensure that concatenation is pitch-synchronous we
need to predict accurate pitch marking which is essential for
preserving the natural prosody of the synthesized speech. For
unit selection in principle, we need to modify FO and duration
of the candidate units. However, if the unit selection database
is big enough, we may not need any prosodic modification as
the selected target may be close to the desired prosody.

III. RECORDING SPEECH DATABASE

A vital component of unit selection speech synthesis is
the design of the voice. Regardless of how well a system
is executed, the generated speech can only be as excellent
as the data comprising the voice inventory. Typically, speech
synthesis datasets are recorded professionally by a single
speaker in a controlled environment under supervision. The
amount of data required for TTS depends on the chosen model.
The type of data or domain is another important aspect which
is given importance while building voice inventory for unit
selection-based TTS. This section discusses the various design
decisions taken to build the unit selection synthesizer which
is capable of reading dessert recipes, which limits the domain
of the synthesizer. Figure 2 provides an overview of the
process of corpus creation, automatic script/prompt selection
and recording prompts.

Building a voice consists of the following processes:

« Data collection

o Automatic script design

e Record the speech with the help of voice talent

o Automatic corpus segmentation and labeling of the

recorded utterances

o Extract pitch marks

o Extract parameters for voice building

o Build a unit selection synthesizer

o Test and evaluate the voice

A. Data Collection

Data for the recording was collected from
tastykitchen.com, which allows for the scrapping
of the content on the website. Over 1000 dessert recipes were
scraped and then they were split into sentences and the top
50,000 sentences were selected as sentence inventory, from
which the prompts will be selected for recording.

The collected utterances consist of non-standard words
(NSW), some of the common NSWs are mentioned below:

o abbreviation of units such as kg (kilogram), g (gram),
cm (centimetre), mm (millimetre), °C (degree Celsius),
°F (degree Fahrenheit), tsp (teaspoon), tbsp (tablespoon)

o dimensions - 20x10 tray (twenty by ten tray)

o Fractions: 1/4 (quarter), 1/2 (half)

o Ratios: 1:2 (one is to two)

¢ Unicode characters (Emojis, quotes, special characters
etc.)

Some of the above-mentioned NSWs are specific to the
domain of cooking and their expansion rules might be missing
from the Festival’s frontend which converts the text to
token, which can then be used to generate phonetic tran-
scription as per the chosen lexicon. If this step fails we might
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Fig. 2: Overview of corpus creation, automatic script selection and recording
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Data Coverage Statistics
Number Number Theoretical
of Phones of Diphones Diphone Coverage
ArcticA (GAM)  66/78 1093 25.09%
Cooking (GAM)  67/78 1143 25.46%
Cooking (RPX)  60/62 1073 29.81%

TABLE I: Phone and diphone coverage in source data (corpus)

not get the correct tokens for the utterances and there will
be a mismatch in pronunciation of which we pronounce and
which is generated by the festival frontend and this will lead to
failure in the alignment step. We must ensure that the various
terminologies are expanded such that they can be converted
into correct tokens by the festival front end.

B. Automatic script selection

The speech database was designed for English unit selection
synthesis using diphones. The script design followed the idea
of the English CMU ARCTIC databases [4] [5]. Starting with

our initial text corpus of 50 thousand utterances, we selected
utterances in the script that satisfied the following conditions:

o be at least 10 letters

e be between 5 and 15 words

« only contains characters from the english alphabet or any

of the english punctuation symbols

o starts with a capital letter

« end with a punctuation symbol

The choice of pronunciation dictionary/lexicon determines
the phone set which will be used by the TTS system. Festival
provides a pronunciation dictionary for General American
English (GAM), British English (RP) and Scottish English
(Edinburgh). As the speaker is a non-native English speaker,
however, the choice of pronunciation dictionary was made on
the basis of the closeness of speech to these three accents,
which was identified that the pronunciation of the majority
of words is closer to General American English (GAM).
Hence, for the purpose of converting utterances to phones,
the festival’s uniliex—gam phone set was used for voice-
building purposes unless specified.

Festival’s pronunciation dictionary provides good coverage
of words, however, there might be out-of-vocabulary (OOV)



words, for which it may use letter-to-sound rules,
which may not be correct. Hence, all the utterances, which
consist of OOV words with frequency < 20 were not selected
for further prompt selection stage. We found a total of 26 OOV
words whose pronunciation was not present in unilex—gam,
we added them manually to the dictionary by identifying
similar-sounding words from the dictionary and using parts of
their pronunciation such that we have consistent pronunciation
for OOV words.

To ensure that we are able to record the most possible
context-sensitive combination of phones, TTS scripts generally
maximize some sort of phone coverage. Among the various
metrics which could be used to ensure the coverage of the TTS
script such as phone, diphone, triphone etc. coverage [4]. For
prompt selection, we have a two-stage algorithm where in the
first stage we greedily select sentences to have the best diphone
coverage. The first stage ensures that we have coverage of at
least 1 unique diphone in our script (including rare diphones).
We aim to collect 600 utterances from the corpus which
provides maximum diphone coverage. The first stage of the
greedy algorithm ranks the utterances with maximum diphone
gain normalized by the number of unique diphones in the
utterance. We found this way of normalization selects sen-
tences which are closer to the length distribution of the original
corpus. The first stage was completed with 278 utterances
covering 100% diphone coverage with at least a single diphone
of each type. The second stage ensures that we have a coverage
of different prosodic variations of common phrases from the
domain, which will help with selecting context-sensitive units
which will help improve the naturalness of the synthesized
voice. The second stage of the algorithm then completes with
322 utterances, covering the utterance with the maximum gain
in unique common phrases normalized by the number of words
in the utterance.

The resulting scripts’ phone and most frequent diphone
distribution are shown in Figure 3 which shows that the
distribution of phones and diphones in our script/inventory
is similar to our source data (corpus). The average length
of sentences is 9 + 3 words which are suitable for recording
purposes. Table I shows the phone and diphone coverage for
the CMU Arctic A [4] and domain-specific dessert-recipes
(cooking) scripts with GAM and RPX pronunciation lexicon.
The greedy algorithm for automatic script generation tries to
achieve maximum coverage of the total number of diphones
present in the source data (corpus).

C. Making the recordings in the studio

Usually for building high-quality voice, speech is recorded
in a recording studio with soundproofing designed to limit
resonance, reverberation etc. However, for the purpose of
this voice, the recording environment is a standard university
accommodation room with modest soundproofing. Bose Quiet
Comfort 35 headset with noise cancellation was used for
recording. The distance between the microphone and the
speaker’s mouth was constant at all times.

The single-speaker speech database is recorded using
SpeechRecorder [6], a tool designed to aid the recording of

speech databases. The user was allowed to record the multiple
versions of each sentence and the best instances were used.
The recording sessions were conducted in multiple sessions
to ensure that the speaker is able to speak in a consistent
prosody through the recording of the database. Any mistakes
in utterances due to wrong pronunciation or incorrect pauses
or intonation are recovered by re-recording those utterances
or correcting the corresponding transcription to avoid re-
recording. For this work each sentence was recorded and saved
as a separate WAV file with the following considerations:

o Sentences are pronounced with natural intonation with
full diacritics such as to match the written form of the
script.

e WAV files were recorded with 48 kHz/16-bit, single
channel format, which is then downsampled to a sampling
rate of 16kHz.

« Endpointing was not used as the silences at the start and
end of each utterance are short and consistent.

We recorded CMU Arctic A [4] and domain-specific dessert-
recipes (cooking) scripts with average utterance duration of
4.5s and 5s respectively.

D. Automatic corpus segmentation

After the script is recorded, the next step is the phonetic
labeling of the recorded speech. One of the challenges is to
find out the precise location of phone boundary. As we are
using diphones, we do not need to place labels at the phone
boundaries but instead midway between phone boundaries
which works for the majority of segment types. Marking
phone boundary midway between phone boundaries has the
advantage that when we join phones midway, the spectrum is
locally static compared to the phone boundaries and minute
inaccuracies in the phone boundaries will still result in diphone
boundaries which fall with the static region. Additionally, this
allows us to use less precise methods for labeling phones such
as automatic labeling and take advantage of the quantity of
data instead of precisely tagged human labeling.

Automatic labeling is done by first converting the script
to appropriate phonetic label sequences using a pronuncia-
tion dictionary. This poses two challenges. Firstly, does the
phoneme sequence account for the accent of the speaker and
the effect of connected speech such as vowel reductions, co-
articulation etc. The second challenge is to precisely match
the recorded speech to predicted phone sequences. These
challenges are handled by using an accent-specific lexicon
and using the linguistic analysis phase of TTS process such
as adding information of closure, release, inserting pauses
and silences to allow for better alignment of phonemes and
recorded speech. The pronunciation variation is handled by
adding alternative pronunciations of the words, which is mod-
eled by a separate HMM framework as separate paths with
the same start and end words.

The next step in automatic labeling is to align the phonetic
transcription to recorded utterances. This is done by using
HMMs in forced alignment mode, where instead of recognis-
ing the phones in the utterance, where we give correct phones
and phone substitutions in the correct sequence to choose



from. Trivially, the recognition will always be correct, but as
a by-product, the Viterbi algorithm produces state-observation
alignment. Here, the training and testing data is the same i.e.
the complete speech data. This is achieved using standard
left-to-right monophone HMMs with 3 emitting states. We
use 12 MFCC coefficients with energy, their deltas and delta
deltas (a total of 39) features as speech parameters. A 10 ms
window size with a 2 ms shift is used to generate observations
which are aligned with phone states. The observations are
modeled with GMMs which are gradually increased during the
training process using HTKSs standard mixing up procedure.
Finally, forced alignment using the final models is used to
predict labels for the recorded speech. This process produces
consistent alighment and is computationally very fast. We get
phone, and diphone durations as a result of this process and
we can segment candidate diphones units which make up the
unit selection database.

E. Extracting pitch marks

Here we use make_pm_wave script provided by the Fes-
tival which filters an incoming waveform with a low and high
pass filter, then uses autocorrelation to find the pitch mark
peaks with the specified min and max values for pitch periods.
For the unvoiced section of a waveform, it fills with default
pitch marks. An insufficient range of pitch period may result in
too many or too few pitch marks. As the concatenation is done
on pitch marks, incorrect pitch marks will leads to incorrect
sections of waveforms getting concatenated will result in
artefacts in the resulting speech signal. Finally, the generated
pitch marks are time shifted to align pitch marks with the
largest peak in each period; this is done using make_pm_fix
script.

FE. Extract parameters for voice building

After candidate units are extracted to create the speech
database, the next step is to extract the features from the
candidate units to be used for the unit selection algorithm. This
includes building utterance structures to store all the linguistic
information required for the target cost. The linguistic infor-
mation such as phonetic string, a tree structure that connects
those phones with their parent syllables and words, phonetic
timestamps obtained by forced alignment etc. are added to the
utterance structure. Other information required by join cost
such as fundamental frequency, FO and MFCC coefficients are
is also extracted from candidate units and stored in separate
files per utterance.

IV. LISTENING TESTS AND RESULTS
A. Listening Test Design
Following are the types of subjective listening tests which
were conducted as part of the evaluation:

e Ranking of voices in the order of naturalness, which is a
comparison-based test. Most natural will be ranked Ist.

e Mean Opinion Score (MOS). A single test included
listening to randomly ordered utterances, and listeners

were asked to give a score of 1 (worst) to 5 (best) to rate
their opinion of the utterance.

Recently, automatic speech recognition (ASR) is in-
creasingly used to evaluate the intelligibility of text-to-
speech synthesis (TTS) and results have shown such eval-
uation of intelligibility is consistent with human evaluation
and often more reliable [7]. Whisper [8], as state-of-the-
art in ASR has shown near-human performance. We use
openai/whisper-large-v2 from huggingface for
generating transcription and consequently word error rate is
calculated as an objective measure of intelligibility.

For evaluation of different synthesized voices, we selected
10 test utterances, which were not used in the synthesis of
voice. These test utterances can be further divided as follows:

e In-Domain: 5 utterances are selected from dessert recipes.

e Near In-Domain: 3 utterances are selected from general
cooking recipes which were not dessert recipes.

e Out of Domain (OOD): 2 utterances are selected from
CMU Arctic B [4].

The number of test utterances was kept to 10 as the listeners
were volunteers and it is expected that they are likely to
abandon the listening test if the overall duration is kept longer
than 10-15 minutes. 42 test responses were collected and after
sanity checking 39 test responses were taken in the subjective
evaluation of voices. Out of 39 tests, 60% of the listeners were
native speakers of English.

B. Experiment 1: Effect of pitch marking and FO estimation

As discussed in III-E incorrect pitch marking can lead to
incorrect sections of waveforms of the target units getting
concatenated which can result in artifacts which can have
an adverse effect on the perceived naturalness of synthesized
speech. Hence, better pitch marking should result in more
natural speech. The FO contour plays a vital role in conveying
prosodic information and contributes to the naturalness of
the synthesized speech. Unit selection TTS systems may face
challenges in generating smooth FO contours, especially when
concatenating speech units with different FO characteristics.
Signal processing techniques, such as FO smoothing and
modification, can help mitigate these issues but may introduce
artifacts if not applied carefully.

Festival’s FO estimation which uses SRPD (Super Resolution
Pitch Determinator) [9] algorithm. We find that REAPER [10]
consistently performs better than SRPD as shown in [11]
which provides a detailed study of several pitch detection
algorithms in simulated and noisy environments. We also did a
subjective evaluation by comparing the pitch marks predicted
by Festival’s pitch marking algorithm and REAPER. Figure 4
shows an example of one such comparison, where we found
that for the voiced regions REAPER is generally predicting
pitch markings closer to the highest peak per epoch. For this
reason, we chose REAPER to compare the effect of better or
worse pitch marking and FO estimation on the perception of
naturalness of speech and objective evaluation of intelligibility.

The results of subjective evaluation of the naturalness of
voices generated by Festival and REAPER, Figure 5 show the
mean opinion scores (MOS) provided by listeners. We can
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Fig. 4: Visualization of pitch marking generated by Festival and REAPER.
observe that the human voice is consistently given the highest Voices
naturalness aI.ld the MOS score for REAPE.R is slightly be.tter REAPER Festival Human
than the Festival voice. We further do a significance testing,
with Wilcoxon signed rank test [12] at p-level p < 0.05. WER 6.50% 7.10% 2.50%
MOS 245 £ 0.61 2.30 £ 0.70 4.83 £ 0.02

We get a Wilcoxon p-value of 0.4488 >> 0.05 which
demonstrates no significant differences between the MOS
scores. This indicates that there is no perceivable difference
in the naturalness between the two voices. We also perform
an objective evaluation of the synthesized voices as shown
in Table II. We find that the results are consistent with the
MOS scores for naturalness, however, given that we only have
10 utterances for testing, the difference in WER is deemed
insignificant.
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Fig. 5: Boxplot of MOS scores on the naturalness of synthe-
sized voice using different pitch marking and FO estimation
algorithms

C. Experiment 2: Domain adaptation of voice

In this experiment, we would like to understand the effect of
data size and domain of training data used to synthesize voice
on the perception of naturalness by listeners. In corpus driven
TTS system, domain adaptation is achieved by adding data
from the target domain and synthesizing voice on the new data.
[13] Also, the synthesized speech on test data from a different
domain is comparatively less natural and intelligible because

TABLE II: Subjective and objective evaluation results for
exploring the effect on naturalness and intelligibility of better
pitch marking and FO estimation algorithms

of differences in prosodic requirements such as duration of
words, intonation and also missing phones and diphones from
the different domain. [1]

We synthesized three voices Cooking (278)
Cooking (600) , Cooking+Arctic (1193). The
voices Cooking (278) and Cooking (600) are from

the dessert recipes domain with 278 and 600 utterances in the
training script; 278 utterances provide 100% diphone coverage
and Cooking (600) is synthesized with 322 additional data
as discussed in Section III-B. Cooking+Arctic (1193)
is synthesized with 600 utterances from dessert recipes and
593 utterances from CMU Arctic A [4] with data from
out-of-copyright books from the Gutenberg Project; which
means that additional data is out-of-domain.

Figure 6 shows the results of subjective evaluation of com-
parative naturalness voices on the test utterances grouped by
the domain of data. Table III shows the results of the objective
evaluation results of intelligibility. Based on the results of lis-
tener preferences can conclude that for in-domain data the nat-
uralness is in order Cooking (600) > Cooking (278)
> Cooking+Arctic (1193) and adding more data helps
improve naturalness and intelligibility only when the addi-
tional data is from the same domain. We can also conclude
that additional OOD data helps synthesized voice adapt better
for out-of-domain data as listeners show a significantly higher
preference for Cooking+Arctic (1193) for OOD test



Voice Test Data Type (WER)

In Near Out of

Domain In Domain Domain

Cooking (278) 6.50% 8.10% 17.40%
Cooking (600) 3.20% 5.40% 13.00%
Cooking+Arctic 11.30% 7.90% 11.50%

TABLE III: Results for comparison of effect of data quantity
and domain on intelligibility

utterances; however we cannot conclude that the resulting
voice is of good quality as WER for OOD utterances is
significantly higher than in-domain and near-in-domain cases
as shown in Table III, but comparatively lower than other
voices.

V. DISCUSSION AND CONCLUSION

In this report, we investigated the process of building a
unit selection voice for text-to-speech (TTS) synthesizers,
with a primary focus on the waveform generator stage of
the synthesis pipeline. We began with an overview of unit
selection synthesis, discussing how a well-designed system
could produce high-quality voices that are natural and intelli-
gible. We examined the main components of the unit selection
algorithm, including target construction, target cost, and join
cost, and how they impact the selection of candidate unit
sequences. We also discussed the Viterbi search for identifying
the best candidate unit sequence and how the waveform of
the optimal sequence is concatenated to result in natural and
intelligible synthesized speech.

Our TTS system was designed to speak dessert recipes
such that it sounds natural and intelligible to humans. We
collected data by scraping websites, cleaned and normalized
it for recording purposes, and employed a greedy algorithm
for maximizing diphone coverage. We generated a script of
600 utterances and recorded them alongside CMU Arctic A
data. We then detailed the speech recording process, including
setup and processing steps. Automatic corpus segmentation,
using forced alignment mode of HTK-based HMM training,
aligned phone sequences of utterances and recorded speech,
segmenting diphones to prepare candidate units for the unit
selection database. We explored building utterance structures
that include linguistic features, duration information, pitch
marking, FO, MFCC coefficients, and their effects on the unit
selection algorithm.

We designed listening tests and analyzed the results of
two experiments with 39 non-expert listeners, of which 60%
are native English speakers. The first experiment evaluated
perceived naturalness using the robust REAPER pitch marking
and FO estimation algorithm compared to Festival’s algorithms.
Subjective evaluation of naturalness using mean opinion scores
revealed a slightly higher preference for the REAPER voice,
but significance testing showed no significant preference.
Objective evaluation with the Whisper ASR system found a
0.60% better WER for the REAPER voice, but given the test
utterances’ size, the difference was deemed insignificant. The
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Fig. 6: Results of listener ranked preference of synthesized
voice showing the effect of data quantity and domain on
perceived naturalness. Lower ranks show higher preference.

second experiment assessed the effect of data quantity and
domain on synthesized voices’ domain adaptation. Listener
preference testing for naturalness by ranking of voices and
ASR-based automatic transcription was used for subjective and
objective evaluations, respectively. We concluded that addi-
tional in-domain data improved in-domain and near in-domain
naturalness and intelligibility, where voices synthesised with
one-fourth of in-domain data performed better than those using
additional out-of-domain data.

In conclusion, unit-selection-based TTS systems can create
natural and intelligible synthesized voices with minimal effort.
Ensuring data quality in terms of recording setup and phonetic
coverage for context-sensitive diphone candidates can signifi-
cantly enhance synthesized voice quality. With a large enough
unit selection database, we can generate voices covering a



majority of prosodic variations within the domain, resulting
in natural and intelligible speech with minimal waveform
processing during candidate unit concatenation compared to
other concatenative synthesis methods.
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