
1

Enhancing ASR Systems: An Exploration of
Weighted Finite State Transducers and Viterbi

Decoding
s1945124

Abstract—Automatic Speech Recognition (ASR) systems
are becoming part of daily life. From live captioning to
automatic dictation, we have all used ASR in our lives. This
report discusses a set of experiments on weighted finite state
transducers (WFST) and Viterbi decoder, which are crucial
parts of speech recognition systems. We probe WFSTs and
Viterbi Decoder in a wide range of experiments and observe
their effect on speech recognition by observing the change
in accuracy and computational efficiency.

Index Terms—Automatic Speech Recognition, WFST,
Viterbi Decoder

I. TASK 1 – INITIAL SYSTEMS

This section describes the data, and metrics used to per-
form all the experiments. A baseline system is described
against which all the experiments will be compared.

A. Data

This report performs all the experiments on 318 ut-
terances and their transcribed text. Recordings comprise
of short utterances with words randomly selected from
the tongue twister “Peter Piper picked a peck of pickled
peppers. Where’s the peck of pickled peppers Peter Piper
picked?” (without punctuation). A 12-word lexicon is
used. For the report, we have created a train/valid/test split
of 70%/5%/25%. The train utterances were used for the
purpose of learning language models (unigram & bigram).
The validation set is used to find the best settings of
various parameters in experiments. Finally, we used the
test split to report the results. This is done to prevent any
data leakage and report results on completely unseen data.

B. Metrics

The following metrics are used to evaluate the accuracy
and efficiency of the ASR system:

• Word Error Rate (WER): The percentage of words
that were incorrectly predicted. The lower the value,
the better the performance of the ASR system with a
WER of 0 being a perfect score. Word error rate can
then be computed as:

WER =
S +D + I

N
× 100

Where:
1) S is the number of substitutions
2) D is the number of deletions
3) I is the number of insertions

4) N is the total number of words across all
utterances (transcript)

• Number of forward computation: The cumulative
sum of all forward computation steps taken during
the Viterbi decoding, that is, every time we compute
the likelihood along an arc in the WFST. It is closely
related to the decoding speed which is reported as
backtrace, decoding and total runtime in seconds.

• Number of states and arcs: The number of states
and arcs in WFST model. It serves as a proxy for
the memory size of the model. A larger lexicon
should have more states and arcs, hence, the memory
required is expected to increase proportionally to the
number of states and arcs.

C. Baseline

In the baseline system, we use a 3-state WFST for each
phone in the word. We create a linear phone WFST for
all the words in lexicon. All the intermediate transitions
output a ϵ symbol, except the final emitting arc from the
last phone state of the word, which outputs the recognized
word. The start state has a uniform probability of going
to any word. All the states have a probability of 0.1
for staying in the same state and a probability of 0.9
to transition to next state. The final probabilities are set
using a uniform distribution, indicating the probability of
an utterance on any word. The final state is connected to
start state via and ϵ-arc. Figure 1 illustrates the baseline
WFST.

A pre-trained neural model is provided which provides
the observation probability of a phone at any state in
HMM, whereas the state transition probabilities are taken
from WFST self-loop and transition values. We then
perform Viterbi decoding which calculates the posterior
probability of getting the most probable word sequence
given an utterance; this is proportional to the value of the
last acoustic frame. After running the Viterbi decoder over
the test data, we obtain the results of the baseline model.
Table II presents the evaluation accuracy and efficiency
results of the baseline model.

The baseline performs poorly and as it can be seen
from Table II that the WER achieved is 144.81% with
7 deletion, 740 insertion, and 216 substitution errors. We
have a total of 665 words in the test data. Looking at an
example utterance: peter piper picked a peck of pickled
peppers, the ASR system predicts: the picked of a picked
picked peck of pickled of where’s the. It can be clearly



2

Fig. 1: Baseline WFST with uniform final probabilities

seen that the model is over-predicting, which can be
attributed to the model predicting even when we have a
silent acoustic frame. This suggests that adding a WFST
for silence to the baseline model should result in a much
lower WER.

II. IMPROVING RECOGNITION (WER) OF ASR SYSTEM

The baseline system could be further improved by
exploring the effect of various aspects of WFST. Four
changes are further explored which are described in this
section. We explored self-loop probabilities, and the final
probabilities of the word WFST, adding WFST for silence
and transitioning to the next word using unigram word
probabilities.

A. Effects of the self-loop probabilities and system tuning

In this section, we observe the effect of self-loop
probabilities and next-probability on WER of the system.
We will also try to find a good setting of self-probability
and next-probability after tuning the system with a grid
search on self-loop probability and next-probability.

In subsection I-C, we observed that the model is over-
predicting. One way to prevent the model from emitting
more words is by increasing the possibility of staying in
a single state. It could also be helpful in scenarios where
a word in an utterance is spoken slowly (i.e. for a longer
duration), or have a longer duration on the middle syllables
such as “reoccurring”, hence it will be able to recognize
such words better. To explore this, we perform experiments
by varying the self-loop probabilities and next probabilities
in a range of [0.1-0.9] with 0.2 increments. At the end of
this experiment we also tune the baseline system to find the
best setting of self-loop probability and next probability.
The result of Tuned Baseline is reported in Table II.

Hypothesis: We hypothesize that by keeping the next
probability the same and increasing the self-probability,
the WER will decrease.

Result: Table I shows the effect of WER when we
increase the self-loop probabilities in the baseline model
settings. The result from the best setting of the experiment
is then evaluated on the test set and is reported under
Baseline + Self-loop section in Table II.

Conclusion: The results presented in Table I show that
the WER keeps improving as we increase the probability
of self-loop. We believe that this improvement in WER is

Self-loop Next WER.
Probability Probability

0.10 0.9 118.97%
0.30 0.9 83.33%
0.50 0.9 78.16%
0.70 0.9 75.29%
0.90 0.9 72.99%
0.10 0.1 118.97%
0.30 0.1 70.69%
0.50 0.1 68.39%
0.70 0.1 67.82%
0.90 0.1 67.24%

TABLE I: Effect of self-loop probability on WER keeping
next-probability constant in the baseline model.The WER
is evaluated on Validation set. This not an exhaustive table,
but other settings follow a similar trend.

because higher self-loop probability is able to model the
silence frames corresponding to pauses in the utterances.
In Table II under Baseline + Self-loop section,
we observe a decrease in insertion error by 55%, which
further supports our hypothesis.

B. Effects of the final probabilities

Hypothesis: The final probability of a state is the prob-
ability of ending in that state. We calculate the probability
of a word ending as the final word of utterances in the
training set. After observing the probability of all the
words, we find that the distribution of any word ending up
in the final position in given utterances is nearly uniform.
Hence we hypothesize that if we set the final probability
as calculated from the data or set them uniformly, it will
not have any significant effect on WER on the test set.

Result: The results from the experiments
are presented in Table II under section
Tuned Baseline + Learned Final Prob.
When compared with Tuned Baseline we observe a
1% increase in WER when the final probability is learnt
from training data.

Conclusion: As hypothesised, we see that the difference
in WER is not significant as the learnt distribution of
final probabilities is close to uniform. Hence, we choose
to use the uniform final probabilities to account for the
randomness in data in all the consecutive experiments.



3

Self-loop/Next Runtime in seconds Forward Number of S/D/I WER
Probability (Backtrace/Decoding/Total) Computations States/Arcs Errors

Baseline 0.1/0.9 0.046/319/432 10829163 127/252 216/7/740 144.81%

Improving Recognition Accuracy
Baseline + Self-loop 0.9/0.9 0.047/316/428 10822893 127/252 219/16/327 84.51%

Tuned Baseline 0.9/0.1 0.056/321/434 10820865 127/252 213/37/208 68.87%
Tuned Baseline + Learned Final Prob. 0.9/0.1 0.038/318/428 10820247 127/252 210/29/224 69.62%

Tuned Baseline + Silence WFST 0.9/0.1 0.047/344/458 11481537 133/268 194/41/80 47.37%

Varying Grammar
Unigram 0.9/0.1 0.055/323/437 10821298 127/252 208/30/226 69.77%

Bigram 0.9/0.1 0.049/469/583 16530192 127/384 191/41/229 69.32%
Unigram + Silence (UniG-Sil) 0.9/0.1 0.054/341/452 11481918 133/268 195/41/80 47.52%

Bigram + Silence (BiG-Sil) 0.9/0.1 0.141/2989/3159 112096287 991/2688 193/31/173 59.70%

Improving Computational Efficiency
UniG-Sil + Tree Struct Lexicon 0.9/0.1 0.078/263/377 8801576 103/208 195/41/80 47.52%

UniG-Sil + Beam Search (0.01) (A) 0.9/0.1 0.032/78/190 1428773 133/268 316/51/138 75.94%
(A) + Tree Struct Lexicon 0.9/0.1 0.040/40/152 673571 104/209 321/61/113 74.44%

BiG-Sil + LM Pruning (0.01) (C) 0.9/0.1 0.084/2012/2159 74606412 673/1787 193/55/168 62.56%
(C) + Tree Struct Lexicon 0.9/0.1 0.084/1386/1518 51701210 462/1198 193/55/168 62.56%

(C) + Weight pushing + Beam Search 0.9/0.1 0.057/69/193 911357 462/1198 267/181/90 80.90%

TABLE II: Summary of results on test-set.

C. Adding a silence state in WFST

Hypothesis: The baseline model suffers from the issue
of over-generation of words. As concluded in Section 1,
this could be the result of predicting words when there
is silence in the acoustic frame. Figure 2 illustrates the
silence model added to WFST used for experiments. Here
silence WFST has 5 states, here, states 2-4 has an ergodic
structure to recognize the silence of various length. We
hypothesize that adding a silence state in WFST will help
model the silent acoustic frames in the audio, which will
lead to lower word insertion errors and thereby effectively
reducing the WER.

Result: The result in Table II under the sec-
tion Tuned Baseline + Silence WFST shows a
significant decrease of 31.21% when compared with
Tuned Baseline, keeping all the other settings same.
We also see a decrease of 60% in insertion errors, with no
visible change in deletion and substitution errors. We also
note that there is a 6% increase in computational steps
with an increase in 6 states and 16 arcs.

Conclusion: The results supports our hypothesis and
we observe a significant improvement in accuracy with
a 6% loss in computational efficiency. Overall, this is
a good trade-off. Further improvement can be done by
experimenting with different topologies for silence WFST
to model various duration of pauses.

D. Exploring unigram and bigram grammar on the system
performance

The baseline model considers a uniform probability of
transitioning to the next word, however, this information
could better be modelled by a language model. In this
experiment, we calculate the unigram and bigram gram-
mar probabilities from the training data. This is done
to avoid any information leakage from our evaluation
datasets through the uniform grammar probabilities. Since

the sil word is not observed in the lexicon, we used Good
Turing Smoothing to redistribute the initial probabilities
and assign a probability mass to the unobserved sil word.

To implement a WFST with unigram model, we add
unigram probabilities on the transition arcs from the start
word to all the linear phone WFSTs for all the words
in the lexicon. Individual word WFSTs have a transition
arc from their final states to the start state. Unigram
WFST is similar to baseline WFST from Figure 1 with the
difference of unigram probabilities on outgoing arcs from
the start state instead of uniform probabilities. Silence
WFST mentioned in subsection II-C is used to model
pauses. Figure 2 illustrates a simple unigram WFST with
silence.

The WFST for bigram has an arc going from start state
to each word WFST with weight of (start, wordi), where
the pair denotes bigram probability of starting from wordi.
The transition arc connecting (wordi, wordi+1) connects
the end state of wordi to start state of wordi+1, to model
a transition between bigram pair. A bigram WFST of two
words is shown in Figure 3. To model silence between
bigrams we insert a silence WFST from subsection II-C
between the bigram pair by adding a parallel arc from
wordi to sil and from sil to wordi+1. This ensures that
after modelling any silence frames between bigrams we
do not transition to any other word other than the target
bigram pair. We assign the arc weights in a way that the
total weight of arcs outgoing from wordi to wordi+1 is
equal to their bigram probability. This is illustrated in
Figure 4, note that arcs from state 7 to 15 (word a to sil)
and 7 to 8 (word a to the) sum up to bigram probability
of (a, the). We note that this method increases the number
of states and arcs by an order of magnitude, and better
alternatives might exist. In section III we will explore ways
of improving the efficiency of our bigram model further.

Hypothesis: We find that the distribution of unigram
probabilities obtained from the training set is very close



4

Fig. 2: Unigram WFST with silence WFST. State 6,7,8 have ergodic connection. Outgoing arcs from state 0 have
different unigram probabilities.

to the uniform probabilities distribution of the next word,
hence, we do not expect any significant change in WER
in comparison to the baseline model. The reason for
unigram grammar probabilities to be close to the uniform
probability can be attributed to a random selection of
words to create utterances in the given corpus.

Bigram grammar might not be always effective and is
likely to perform poorly except for a few phrases such as
“peter piper”, “pickled pepper” etc. where a clear pattern
is observed in the corpus. The training data also assigns
very low probability to unlikely words such as “of pepper”,
words ending with “the/a/of” etc, however, it is observed
that in the validation cases, such words indeed exists and
bigram grammar always makes mistakes in such scenarios.

Also, due to the way silence is modelled between
grammars, we are likely to see more deletion errors in
cases of words with short durations such as “a”, “of” etc.
We believe that while speaking phrases like “a peck” ,
“peck of” there are usually no pauses, however, our WFST
may lead to paths with silences in-between the bigram pair.

Result: The Varying Grammar section in Ta-
ble II shows the results of Unigram grammar with
and without silence WFST. We observe that the re-
sults are very similar to Tuned Baseline and
Tuned Baseline + Silence WFST, which have
uniform next-word transition probability. The results for
bigram are reported under Bigram and BiG-Sil in
Table II. For bigram grammar, without silence, we see
only a very small improvement in substitution errors,
which could be attributed to the prediction of frequently
occurring two-word phrases correctly.

Conclusion: The randomness in the word sequences
in utterances better fits a uniform model instead of a
unigram/bigram model. Given that our experiment setup
has random sentences, language modelling is unlikely to
improve accuracy. However, in large vocabulary systems
language with natural language, language grammar signif-
icantly improves the accuracy of ASR system.

III. IMPROVING COMPUTATIONAL EFFICIENCY OF ASR
SYSTEM

In this section, we try to analyze the efficiency of
the Viterbi decoder and implement a form of pruning to
avoid computations along unlikely paths. We will explore

various methods to make the WFST efficient by decreasing
the size of WFST and improving the decoding efficiency.

A. Standard beam pruning

In standard beam pruning we track the best state at any
time t, and we prune the paths with a probability lower
than beam width times the probability of the most likely
path at time step t [Ortmanns et al., 1996a].

Hypothesis: A higher beam width will result in more
paths getting pruned, which should result in fewer forward
computations, hence, less overall computational time.
However, it is a possibility that the best recognition
sequence path has a probability lower than beam width at
any time t, and may get pruned resulting in lower WER.

Result: Table III presents the results of running stan-
dard beam search on linear lexicon WFST with Unigram
grammar. The final results on test data are reported under
heading UniG-Sil + Beam Search (0.01) (A)
in Table II.

Conclusion: The increasing percentage decrease in for-
ward computations and increase in WER supports our
hypothesis that more paths are pruned as beam width
increases however, optimal paths may get pruned which
results in lower accuracy.

B. Language model based pruning

In subsection II-D the WFST with bigram language
model was an order magnitude more states and arcs.
However, we may note that not all the bigrams have high
probability. Such bigrams exists either because they were
not observed in data and were added during language
model smoothing. It is possible to reduce the overall size
of WFST by adding a pruning threshold based on bigram
probability i.e we will not add arcs if they they are below
this threshold. Since we also add individual silence WFST
for each bigram, this will also reduce the number of states
resulting in a smaller WFST. This is similar to Language
model pruning in [Ortmanns et al., 1996a].

Hypothesis: Pruning arcs with low bigram probability
in Bigram based WFST should lead to slight increase in
WER but considerable reduction in forward computations
during Viterbi decoding. Also, we will get a smaller
overall WFST.



5

Fig. 3: Bigram WFST without silence

Result: Language model pruning results
on test set are presented under heading
BiG-Sil + LM Pruning (0.01) (C) in
Table II,where 0.01 is the language model probability
threshold and any arcs with lower probability will
be pruned and won’t exist in resulting WFST, this is
illustrated in Figure 4, where there is no bigram from the
word the.

Conclusion: We see a considerable reduction of 318
states and 901 arcs from the Bigram WFST with silence.
Also, a 33% increase in decoding speed is achieved with a
loss of only 4.7% decrease in accuracy. This demonstrates
pruning states and arcs with low probability could make

Fig. 4: Bigram WFST with pruned arc from the to a



6

the resulting WFST computationally efficient.

C. Tree structure lexicon

In linear lexicon we do not take advantage of shared
prefix in our WFST. To take advantage of the shared
prefix we convert our linear lexicon based WFST to
tree structure lexicon. We implement this with the help
of python-openFst’s [Riley et al., 2009] determinize()
function. Determinization eliminates multiple paths to
a sequence, this leads to a single path for each input
sequence. This reduces the overall number of states and
arcs, which results in lower computational memory and the
number of forward steps taken during Viterbi decoding.
Figure 5 shows the tree structure WFST equivalent of
baseline WFST from Figure 1.

Hypothesis: Since determinization only eliminates mul-
tiple paths, we should not see any change in WER.
However, since we have fewer states and arcs, we should
get an increase in computational efficiency.

Result: Results are available under heading
UniG-Sil + Tree Struct Lexicon in Table II.
We can observe that the WER remained unchanged when
compared with Unigram + Silence (UniG-Sil),
whereas we observe a decrease of 23% in forward
computations. We also see similar results in
(C) + Tree Struct Lexicon, where we converted
a Bigram WFST to a tree structure lexicon.

Conclusion Based on the results we can safely conclude
that tree structure lexicon is a very effective strategy to
increase the computational efficiency of our ASR system
without compromising on the recognition accuracy.

% Decrease in forward steps % Increase WER
Beam Linear Tree Structure Linear Tree Structure
Width Lexicon Lexicon Lexicon Lexicon
0.01 87.67 91.98 62.19 45.11
0.02 89.18 92.75 62.19 51.20
0.03 90.19 93.33 63.40 58.52
0.04 90.91 93.72 70.72 63.40
0.05 91.38 93.99 70.72 64.63
0.06 91.69 94.38 67.07 65.84
0.07 91.98 94.64 63.40 70.72
0.08 92.39 94.84 65.84 70.72
0.09 92.58 94.97 64.63 69.51

TABLE III: Comparison of Beam Search Pruning in Linear
v/s Tree Structure Lexicon with Unigram grammar on
Validation set

D. Beam search on tree structure lexicon WFST

Hypothesis: In subsection III-C we saw that tree struc-
ture lexicon is a very effective way of improving the
computational efficiency of ASR. Here, we hypothesize
that applying beam search pruning from subsection III-A
on tree structure lexicon based WFST is more effective
way of improving decoding speed than linear lexicon-
based WFST.

Result: Table III shows the comparison of the
percentage decrease in forward steps and percentage

increase in WER for Unigram WFST. We see that
we get a 4% more decrease in forward steps with
less loss of accuracy when we apply beam search
on tree structure lexicon. Also, from the test results
under heading (A) + Tree Struct Lexicon
in Table Table II we see that this method achieves
slightly better WER with 52% further reduction
in forward computations when compared with
UniG-Sil + Beam Search (0.01) (A).

Conclusion: Converting a linear lexicon-based WFST
to a tree structure lexicon WFST is a better strategy when
applying beam search pruning and results in significant
improvement in computational efficiency.

E. Beam Search with weight pushing - a look-ahead
strategy

In subsection III-A we saw that beam search is pruning
the paths with probability lower than beam width prob-
ability of the current best path. We can accelerate the
decoding speed further if we can know whether the path
will result in a likely candidate at early time steps. We
can do this by using push() function in python-openfst
[Riley et al., 2009] which pushes the weight towards the
start state. This makes pruning in Viterbi decoding more
efficient as the initial states will have most of the weight
and we can prune the unlikely path in early time steps.
Figure 5 illustrates weight pushed towards the start state
in the tree structure lexicon WFST.

Hypothesis: Combining beam search for a tree structure
lexicon-based WFST with pushed weights towards start
state can significantly improve decoding performance. If
the path to a prefix head has a lower probability than the
beam width probability, we can skip all the paths through
the prefix head. This will result in a faster decoding
step. This is similar to the language model look-ahead
method in [Ortmanns et al., 1996b] where we would like
to incorporate language model probabilities as early as
possible.

Result: The results of applying beam search on tree
structure lexicon with pushed weights are shown in
Table II shows the result on test set under heading
(C) + Weight pushing + Beam Search.
We observe a 100% reduction forward steps
with a 30% decrease in WER in comparison to
(C) + Tree Struct Lexicon .

Conclusion: Weight pushing in tree structure lexicon-
based WFST provided a very effective way of improving
decoding speed. However, we see a significant drop in
recognition accuracy, which can be attributed to most of
the paths getting pruned, which is evident from very high
deletion errors of 181. The push() method in python-
openfst pushes most of the weight to the start state which
may result in the path getting pruned at very early time
steps. To improve this we need to push the weight to
the common-prefix nodes to avoid very early pruning of
candidate paths. The gain in decoding speed comes at a
cost of poor accuracy and a better beam width needs to be
explored on validation data before applying this strategy.



7

Fig. 5: Tree structure lexicon based Unigram WFST with weight pushed towards start state. WFST shows a common
phone dh (state 7) is shared between the two pronunciations of word the

IV. DISCUSSION & CONCLUSION

In this report, we explored various methods to improve
the computational efficiency and recognition accuracy of
ASR systems. Overall, we find certain settings which are
crucial to recognition accuracy and resulted in improve-
ment of recognition accuracy. We find that modeling si-
lence significantly improves recognition accuracy in all the
settings and prevents over-prediction over silent frames.
Self-loop probability also has a similar effect on over-
prediction and modeling words with longer duration. We
further explored unigram and bigram grammar to improve
recognition accuracy and found that if the utterances con-
sist of random word sequences, we do not get a significant
improvement in accuracy and they might be more effective
in cases where utterances consist of natural language.

We also explored various methods for improving com-
putational accuracy. We found that pruning of WFST
could be achieved by dropping arcs based on low bigram
probabilities and converting the WFST to a tree structure
with shared prefixes. Additionally, we found that the size
of WFST is directly correlated with the decoding speed.
We also found that beam search applied on tree structure
WFST provides a better trade-off between decoding speed
and loss in accuracy. Also, we should be cautious while
using beam search over tree based WFST as we may get a
superficial improvement in decoding speed while no word
sequence is recognized at the end of Viterbi decoding.

In our toy experimentation setting, we set the weights
of the self-loop and next transitions by running a grid
search, which is not an efficient technique. In practice, we
find all the arc weights by the Expectation-Maximization
algorithm [Dempster et al., 1977] on training data, which
iteratively finds the optimum arc weights. The ability
to find arc weights specific to phone type is crucial to
model acoustic properties such as silence, phone duration,
lexical stress etc. A system failing to achieve this may
perform poorly in real-world settings. A rule of thumb
while optimizing ASR performance is to be aware of the
context in which the speech recognition system will be
applied.

REFERENCES

[Dempster et al., 1977] Dempster, A. P., Laird, N. M., and Rubin,
D. B. (1977). Maximum likelihood from incomplete data via the
em algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1):1–38.

[Ortmanns et al., 1996a] Ortmanns, S., Ney, H., and Eiden, A. (1996a).
Language-model look-ahead for large vocabulary speech recognition.
In Proceeding of Fourth International Conference on Spoken Lan-
guage Processing. ICSLP ’96, volume 4, pages 2095–2098 vol.4.

[Ortmanns et al., 1996b] Ortmanns, S., Ney, H., Eiden, A., and Coenen-
Lehrstuhl, N. (1996b). Look-ahead techniques for improved beam.

[Riley et al., 2009] Riley, M., Allauzen, C., and Jansche, M. (2009).
OpenFst: An open-source, weighted finite-state transducer library and
its applications to speech and language. In Proceedings of Human
Language Technologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computational Linguistics,
Companion Volume: Tutorial Abstracts, pages 9–10, Boulder, Col-
orado. Association for Computational Linguistics.


	Task 1 – Initial systems
	Data
	Metrics
	Baseline

	Improving recognition (WER) of ASR system
	Effects of the self-loop probabilities and system tuning
	Effects of the final probabilities
	Adding a silence state in WFST
	Exploring unigram and bigram grammar on the system performance

	Improving computational efficiency of ASR system
	Standard beam pruning
	Language model based pruning
	Tree structure lexicon
	Beam search on tree structure lexicon WFST
	Beam Search with weight pushing - a look-ahead strategy

	Discussion & Conclusion
	References

